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Abstract

Complex multi-component mixtures are conveniently modeled with frequency distribution functions that are
continuous functions of a molecular property, e.g.. molecular radius. Size-exclusion chromatographic separations
can be simulated by accounting for the partitioning of the species in the pores of the stationary phase. The
mathematical theory in this paper describes the separation of solutes based on relative sizes of pores and molecules.
Linear partition coefficients are represented for continuous distributions of molecular sizes in either continuous or
discrete distributions of cylindrical pores. Fractal distributions of pores also illustrate the partitioning behavior. The
mass balance equation that governs the frequency distribution of the spherical molecules can be solved exactly
when axial dispersion is the only rate process. This equilibrium-dispersive model yields temporal moment
expressions that are also useful for interpreting chromatographic data.

1. Introduction

Size-exclusion chromatography (SEC) allows
the separation into size fractions of a mixture of
different-sized solutes by their partitioning into
pores of different radii [1.2]. This defining state-
ment suggests that a complete analysis of SEC
requires consideration of the distributions of
both solutes and pores. Both discrete and con-
tinuous distributions may be contemplated, but
many realistic systems will have essentially con-
tinuous distributions of both pores and solutes.

Continuous-mixture theories [3,4] of complex
multi-component systems are based on the con-
cept of the concentration frequency distribution
function (FDF), C(x). which is defined so that
the concentration in the property range (x, x +
dx) is C(x) dx. When integrated over the entire
range of the property x, the FDF becomes the
lumped concentration. ¢. This approach explains

chromatographic separations based on molecular
properties of mobile complex mixtures that inter-
act with an immobile phase [5,6]. Goto et al. [7]
applied the concept to multi-component leaching
or extraction from porous particles in a con-
tinuous-flow system. Desorption from the solid
matrix and partitioning between the extraction
fluid and an immiscible fluid in the pores of the
matrix were included.

The earlier works laid a foundation for under-
standing and extending the approach, but much
remains to be done to explore fully the possi-
bilities of this theory. The models for single-sized
pores have not yet been extended to the more
realistic case of distributed pores. Hence it is the
objective of this paper to examine in greater
detail the nature of the partitioning of molecules
in porous chromatographic media. Specifically,
we consider here the effect of a distribution of
cylindrical pore sizes on the separation of a
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mixture of distributed spherical molecules. Frac-
tal pore-size distributions illustrate the behavior
of the partitioning coefficient for discrete dis-
tributions. The combined influences of the sin-
gle-particle partition coefficient for spheres in
cylinders, the distribution of pore sizes and the
distribution of spherical molecule sizes yield
results of mathematical and practical interest.

2. Chromatographic theory

Assuming that the concentration frequency
distribution is C(x, z.t), we can write the total,
or lumped, concentration. ¢(z, ). as the integral
over x;

c(z,t)=L.C(x.z.,t)dx (1)

The mechanism for size-exclusion separation in
chromatography is partitioning of the solutes in
pores of the immobile phase. The frequency
distribution of the partitioned species can be
defined such that the concentration in the inter-
val (x,x+dx) is Q(x)dx. The lumped par-
titioned concentration, which is a function of
position and time. is the integral

q(z,r)zj() Qx, z,r)dx (2)

In the present treatment we consider only linear
relationships between Q and C. i.e.,

Q(x) = K(x)C(x) (3)

where for chromatography @ and C will also
depend on position z and time 7, but K(x) is
considered uniform and constant (independent
of z and ¢).

2.1. Equilibrium-dispersive model

In the absence of chemical reactions, the
molecular properties of the different chemical
species are unchanged. Then the mass balance
equations that apply for the concentration also
govern the frequency distributions, C(x, z. r) and

Qx, z, 1):

edClat+(1—¢)aQ/at+vaClaz =D a°Claz’
(4)

in terms of the superficial velocity v, the void
fraction ¢ and the axial dispersion coefficient D.
The axial dispersion coefficient, which can be
assumed to incorporate other mass transfer re-
sistances, is considered constant.

For an impulse input to the chromatographic
column the initial and boundary conditions are

Clx.z.t=0)=0 (5)
Clx,z=2ox,1)=0 (6)
C(x.z=0,1)= Cy(x) 3(t)7 (7)

where 7= z/v.
2.2, Exact solution
When the linear adsorption isotherm is Eq.

(3), the chromatographic equation can be writ-
ten as

A(x) aC/at +v 3C/9z = D °Cl 92" (8)
where
AxX)=¢e+ (1 - e)Kx) (9)

The solution [8,9] that satisfies the initial and
boundary conditions is

Clx.z.1)=[C,/(4mDt/Az*)"*] exp[—(1
—ut/Az)*/(4Dt/AZ7)] (10)

which is valid for ¢ = 0 and z = 0. The asymptotic
solution for D/vz—0 is
C(x.z.1)=[C,/(4mD/vz)"*] exp[—(1

— vt/Az)*1(4D/vz2)] (11)

which is Gaussian in ¢.
2.3. Moment solution

When other mass transfer or adsorption rate
processes are incorporated into the chromato-
graphic model, an exact solution is usually not
feasible. In such cases one can apply moment
methods, which provide moment expressions
that allow the interpretation of experimental
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observations of chromatographic output. More-
over, the moments can be used to construct an
approximate solution to the chromatographic
equation. We next solve the partial differential
Eq. 11 by applying the temporal moment meth-
od, which entails computing limits of the deriva-
tives of Laplace transform solutions. The expres-
sions for the moments are readily derived from

M (x,2)=lim_,, (—1)"d"C/ds" (12)

where C(x,z,s) is the Laplace transform of
C(x, z,t). The zero, first and second temporal
moments [5] of the frequency distributions, when
we use the isotherm Eq. 3. are

My(x,z) = M(x, 2 =0) = M,(x)

=Gy Alx)z/v (13)
M (x,z) =M, (x)A(x)z/v (14)
M, (x, z) = My(x)[A(x)z/v]) (1 + D/2v) (15)

These moment expressions determine the pulse
response for any value of the property x.

The temporal moments of the lumped con-
centration, c(z.t), according to Eq. 1, are the
integrals over x:

o) = | M2 (16)

where n is the order of the moment, i.e., 0, 1 or
2. The reduced first moment is defined as

py=m/m, (17)
and the variance as
My = myim = (@) (18)

The results for the lumped moments are as
follows [5]:

py=(A)zlv (19)
m, =2Dz(A%) v + (z/0) (A7) = (A)]]  (20)

where

(A" = J: A@)"Cy(x) dx/j“ C,(x) dx (21)

1s the average over x of the nth power of A(x). If
the parameter K(x) has only one value. namely

K, dx —x,), then (A")=(A)" and the usual
moments for a single component system are
recovered. However, since in general (A*) -
(AY'=((A~-(A))"), the variance of the
lumped concentration of the continuous mixture
is greater than the variance of the single-com-
ponent system. Thus the lumped HETP, defined
as zu,/(p})?, would be greater than that for a
single-component system. Expressions for the
third moment indicating asymmetry were also
discussed by McCoy [5].

To portray the time dependence of the fre-
quency distributions at any position z, one can
represent C(x,z,¢) as a Gaussian function
[10,11}:

Clx,z,t) =[M,/Q2mno*)""?]

xexp[—(t— M,/M,)*/(20°)]  (22)
where
ot =M,IM,— (M, IM,)’ (23)

is the variance of the frequency distribution. By
substituting the moment expressions, Eqgs. 13—
15, one can show that the moment solution is
equivalent to the asymptotic solution, Eq. 11.
For relatively long columns, high velocities or
small dispersion, the approximate solution is
satisfactory.

The HETP for each value of x can be defined
as

H(x)=zo [(M,IM,)* (24)

which yields on substitution of Eqs. 13-15 and
23

H(x)=2D/v (25)

The HETP for a continuous mixture that obeys
the model of Eq. 8 is thus independent of x
unless dispersion and mass transfer provide for
D(x).

The chromatographic behavior of a continuous
mixture was illustrated for examples of the
partition coefficient, K(x), and the feed distribu-
tion, C,(x), in Ref. [6]. The input to the chro-
matographic column was assumed to be Gaus-
sian:

Cyl0) = G exp[~(x ~2)°] (26)
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The partition coefficient, for x <r, was taken as
K(x)=(1-x/r)’ (27)

thus smaller molecules are more strongly re-
tained than larger molecules. The consequent
behavior is reflected in the concentration con-
tours plotted on ¢ versus x, where the contours
slope downward to the right [6]. For the linear
adsorption isotherm, larger molecules are re-
tained longer in the column, and the contours
slope upward.

3. Partitioning in distributed pores

The single-pore partition coefficient accounts
for exclusion of the spherical solute from an
annular region of the cylindrical pore, or from
the pore itself if the sphere is larger than the
pore,

Dx, ;) =(1 ——x/r/)2
P(x,r)=0

for x <,
forx =r, (28)

Consider the case when the pores are not
simply of one size, but are distributed in radius
according to a given continuous or discrete
function. Denote the normalized frequency dis-
tributions by n, and n(r) for discrete and continu-
ous cases, respectively:
1=2n, and | = fn(r) dr (29)

J
For the discrete distribution the actual par-
titioned concentration, ((x), is the sum over all
size pores, and we obtain Eq. (3), Q)=
K(x)C(x), where

K(x)=2 nd(x.r) (30)

is the distributed-pore partition coetficient. For
the continuous distribution, we have the integral
expression for K(x):

Kx)= J' n(r)®(x, r)dr (31)

Thus, when local equilibrium applies for all z
and . we can always write the distribution

coefficient as K(x). The discontinuous nature of
®(x, r) calls for special attention in the summa-
tion or integration to obtain K(x). The depen-
dence of K on x is required to connect the
limiting values K(x =0)=1 (vanishingly small
solutes are totally partitioned in the pores), and
K(x=r,,,)=0 (solutes larger than the largest
pore are totally excluded from the pores).

To illustrate the behavior of a continuous
pore-size distribution, we first consider a dis-
tribution of single-size pores, n(r)=38(r —r,).
When integrated according to Eq. 31 one obtains

K(x) = ®(x, 1) (32)

which is pictured in Fig. 1 for r, =1, 0.5 and 0.1.
The maximum value of r is r,,, and as r, becomes
vanishingly small, K(x) goes to zero since all
solutes are excluded from infinitesimally small
pores.

Next, consider the normalized rectangular
distribution

n(ry=1/(r,—r)) (33a)
for r,=r=<r, and
n{r) =90 (33b)

otherwise. The partition coefficient K(x) has the
three different values depending on the value of
X:

0.8 [&

—
> 0.6

~

X

0.4 -
0.2' \\'\:\‘2\ )
ro=.13\§ N
0.0
0.0 0.2 0.4 0.6 0.8 1.0
X
Fig. 1. The distributed-pore partition coefficient, K(x),

plotted versus the solute radius, x, for a distribution of
single-size pores, n(r) =8(r —r,), with r,=1, 0.5, 0.1 (solid
lines), and for fractal media with cylindrical pores (=,
o=15.a=1)and h=2. 3 and 5 (dashed lines).
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ifx>r,, then K(x)=0
ifx<r,, then K(x)=1+2xIn(r,/ry)/(r,—r,)
+x7/rr,
ifrisx=r,.
then K(x) =2x In(x/r,)/(r, —r))
+(ry = x)iry(ry—r)) (34)
K(x) is plotted in Fig. 2, where r,=1.0 and
r,=0.5, and the values at K(x =r,) match
smoothly as required.

A continuous power-law distribution of pore
sizes is defined by

n(r)y=(b+ 1)’ (35)

Integrating n(r)®(x, r) over r between x and 1
(i.e., x=r=<1) vields

K(x)=1-x"""=2x(b+ 1)(1 —x")/b
+ X (1=x""Yb+ 1)k -1) (36)

which is plotted in Fig. 2 for several values of b.
As b increases. K(x) approaches (1 —x)°. These
pore-size distributions demonstrate cut-off be-
havior for solutes larger than r

max”’

1.0

0.8 :
Ao.sy \\ S .
>

32/0.4 \ b=10
0.0 i I ! = §§_

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 2. The distributed-pore partition coefficient, K(x).
plotted versus the solute radius, x. for a rectangular dis-
tribution of pores (Eq. 33) with r, = 0.5 and r, = 1.0 (dashed
line). and for a power-law distribution (Eq. 35) with b = 1.5,
5 10 and 100 (solid lines).

4. Fractal pore-size distributions

Discrete pore-size distributions can sometimes
be represented by a fractal power relationship
[12]. A model of a porous membrane with a
deterministic fractal distribution of pores can be
developed by a conceptual process of making
non-intersecting holes of equal length in the
immobile phase. Adler [13], in a study of flow in
a porous medium, suggested that such fractals
could be applied to diffusion and conduction
(thermal or electrical), but did not introduce
mixtures of different-sized molecules. The bene-
fit of the fractal approach is that simple mathe-
matical equations describe the fractal properties.

We first consider a pore distribution based on
the fractal known as the Sierpinski carpet [14],
and then generalize the concept to consider holes
of different numbers, shapes and sizes. Fig. 3
shows the steps j = 1, 2, 3 in the construction of a
periodic porous medium from a unit square of
area a’. At step 1 a square hole of edge a/3 is
formed, and in each of the remaining eight
squares a hole of size (a/3%)* is formed. This
process is repeated indefinitely for every square.
The edge length of a square at step j is r, = al3’
and its cross-section has area @”/9’. The number
and volume of pores of length L formed at the
Jth step are

n=8"" and V.= L(8/9Ya’/8 (37)

respectively. The cumulative pore-volume dis-
tribution up to the jth step can be shown to be
La’[1 - (8/9)’], which becomes La’ if j— oo,
meaning that the volume La’ is eventually re-
moved by making square holes in the membrane.
The discrete pore-volume distribution as the
fractal property that it can be represented by a
non-integer power, or fractal dimension, D:

V./La* = B"(r,/a)* " (38)
where
D=1In8/In3and B=8 """ (39)

The fractal pore distribution can be general-
ized by considering pores of cross-sectional area
Qr; where ) =1 for squares, = for circles or
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Fig. 3. Steps in the construction of fractal pores in a spatially
periodic medium: (A) Sierpinski medium, i.e.. Q =1, o =3.
h=8,j=1-3:(B)2=m 0=3 h=6j=1-3.(C) Q==
o=15 h=2 j=1-5

other constants for other cross-section shapes.
Even though the pores are positioned randomly
over the solid, the underlying fractal order of
pore size applies. The relative size (e.g., radius)
of the pores formed at two subsequent steps is
defined as the constant o:

o = (size of pore formed at step j)/
(size of pore formed at step j + 1) (40)

The relative number of pores formed at sub-
sequent steps is also a constant:

# = (number of pores formed at step j + 1)/
(number of pores formed at step j) (41)

A similar generalization of the Sierpinski carpet
was suggested by Pfeifer and Obert [15]. The
size of pores removed at step j is r, = a/c’, and
the volume of a pore is LQ(a/a’)*. The volume
removed at the jth step is L(Qa’/h)(h/o?)’, and
the cumulative volume removed is [LQa*/(o® —
m)|[1 — (h/e*)’]. When the cumulative volume of
pores at the jth step is La’, the structure posses-
ses fractal properties in a finite range of pore
sizes. The fractal dimension D and the pre-
multiplier B in the equation

Vi/La* = B"(r;la)* ™" (42)
can be shown to be
D=Inh/lnoc and B=(Q/h)"" (43)

For the Sierpinski pores =1, o0 =3 and h =8,
and the expressions reduce appropriately to Egs.
39. If 1 =0 then the distribution is rectangular
and discrete.

Examples of fractal constructions are pictured
in Fig. 3. The Sierpinski carpet (A) shows the
first three steps in making the square holes of
size ratio o =3 and number ratio A=8. A
medium with circular cross-section pores is
shown (B) with ¢ =3 and A =6. The random
positioning of the pores (C) with ¢ =1.5 and
h =2 does not affect the separation process.

Fig. 4 shows the pore volume distribution
versus r/a for various values of the parameters.
The fractal media display pore-volume distribu-
tions that may either increase or decrease with
pore size. One may utilize such power-law dis-
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Fig. 4. Log-log plot of the pore-volume distribution: re-
duced volume, 1/J/La:. versus pore size, r/a. for fractal
media with cylindrical pores (£2 = 7)., o = 1.5 (dashed lines)
and o =3 (solid line), and several values of 4. The dotted
line is the Sierpinski medium (2 =1. o =3. h =8).

tributions as continuous distributions. For the
discrete distribution, values of r; are spaced
evenly on the logarithmic axis by the amount
logo. The line for the square-pore Sierpinski
medium would be parallel to the cylindrical-pore
case for 0 =3 and A =8 (not plotted). For a
given value of ¢, lines for different / intersect at
r=1/o.

Table 1 shows values of 7, and n(r,) for several
values of A. If the smallest value of x is 0.1, then
J =135 is the smallest pore that will partition the
solute. The partition coefficients for these dis-
crete fractal distributions are plotted in Fig. 1.
As the largest pore is r, =0.6667. K(x=r,)=0
shows the pore cut-off. The partitioning behavior
reflected in the integration procedure ensures
that K(x) is a continuous function for x in the

Table 1
Pore size and pore volume fraction in a fractal distribution of
five pore sizes (0 =15. Q=7 a=1)

i ria n,

h=2 h=3 h=5
1 0.6667 0.250 0.104 (.023
2 0.4444 0.222 0.138 0.051
3 0.2963 0.197 0. 184 0.113
4 0.1975 0.175 0.246 0.252
5 0.1317 0.158 .328 0.560

interval (0, 1). The development of quantitative
expressions for temporal moments or contour
plots of the concentration frequency distribution
is straightforward, and provides the same conclu-
sions summarized above from McCoy [5] and
McCoy and Goto [6]. The specific task addressed
here, to construct the partition coefficient given
a pore-size distribution, provides the essential
information needed for the retention time (first
moment). Development of expressions showing
how the rate processes, €.g., intraparticle diffu-
sion in distributed pores, influence the band
broadening (second moment) remains an assign-
ment for the future.

5. Conclusions

The distributed-pore partition coefficient,
K(x), for a continuous mixture, denoted as a
distribution in the solute radius, x, is the key
parameter investigated here for size-exclusion
chromatography in distributed pores. The func-
tion is calculated for continuous and discrete
pore distributions. The partitioning of the spheri-
cal solute molecules in the cylindrical pores
makes use of the single-pore partition factor,
®(x, r). to exclude the spherical solute from an
annular region of the pore, and to exclude totally
solutes larger than a pore. Once K(x) is known,
then the exact solution to the equilibrium-disper-
sive model can be found. Temporal moments can
also be computed in order to provide infor-
mation about how the distribution of solutes is
separated in the column. In addition to continu-
ous pore-size distributions, we have examined
how fractal distributions of pores can be con-
structed and integrated to determine K(x). The
current theory incorporating size distributions of
both solutes and pores thus invites further study
of chromatographic and other separation pro-
cesses involving porous media.

Symbols

A(x) =e¢+(1-¢e)K(x)
C(x) concentration frequency distribution
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Co(x) input concentration frequency distribu-
tion

c lumped concentration

D axial dispersion coefficient

G parameter in inlet concentration fre-

quency distribution
HETP  height equivalent to a theoretical plate
H(x) HETP for the concentration frequency

distribution

K(x) partition coefficient

My(x)  zeroth moment of the concentration
frequency distribution C(x)

M, (x)  first moment of C(x)

M,(x)  second moment of C(x)

M,(x)  nth moment of C(x)

m, nth moment of the lumped concen-
tration ¢

Ox) concentration frequency distribution of
adsorbed species

q lumped concentration of adsorbed
species

t time

v superficial column velocity

X molecular property

z position coordinate in the chromato-

graphic column

Greek letters

€ column void fraction

) Dirac delta distribution function

M =m,/m,, reduced first moment of the
lumped concentration ¢

My =m,/m,— (u})’. variance of the
lumped concentration ¢

a’ =M,/M,— (M,/M,)*, variance of the

frequency distribution
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